Insights into the H2/CH4 Separation Through Two-Dimensional Graphene Channels: Influence of Edge Functionalization

نویسندگان

  • Jing Xu
  • Pengpeng Sang
  • Wei Xing
  • Zemin Shi
  • Lianming Zhao
  • Wenyue Guo
  • Zifeng Yan
چکیده

A molecular simulation technique is employed to investigate the transport of H2/CH4 mixture through the two-dimensional (2D) channel between adjacent graphene layers. Pristine graphene membrane (GM) with pore width of 0.515~0.6 nm is found to only allow H2 molecules to enter rather than CH4, forming a molecular sieve. At pore widths of 0.64~1.366 nm, both H2 and CH4 molecules could fill into the GM channel, where the permeability of methane is more preferential than that of hydrogen with the largest CH4/H2 selectivity (1.89) at 0.728 nm. The edge functionalization by -H, -F, -OH, -NH2, and -COOH groups could significantly alter gas permeability by modifying the active surface area of the pore and tuning attractive and/or repulsive interaction with molecules at the entrance of channel. At the pore width of 0.6 nm, the H2 permeability of molecular sieve is enhanced by -H, -F, and -OH groups but restrained by -NH2, especially -COOH with a passing rate of zero. At pore widths of 0.64 and 0.728 nm, both -H and -F edge-functionalized GMs show a preferential selectivity of methane over hydrogen, while the favorable transport for GM-OH is changed from H2 molecules at 0.64 nm to CH4 molecules at 0.728 nm. For GM-NH2, it exhibits an excellent hydrogen molecular sieve at 0.64 nm and then turns into a significant H2/CH4 selectivity at 0.728 nm. Meanwhile, small H2 molecules start to enter the channel of GM-COOH at the pore width up to 0.728 nm. For the largest pore width of 1.336 nm, the influence of edge functionalization becomes small, and a comparable CH4/H2 selectivity is observed for all the considered membranes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gas Separation Properties of Mixed Matrix Membranes based on Polyimide and Graphite Oxide

In this work, three different graphene-based materials, namely graphite oxide (GrO), thermally reduced graphite oxide (T-RGrO) and ascorbic acid multi-phase reduced graphene oxide (AMP-RGO), were synthesized and used to produce mixed matrix membranes (MMM) based on Matrimid®5218 for as separation. From the samples produced, a complete set of characterization was performed including XRD, FTIR, T...

متن کامل

Inhibition effect of a non-permeating component on gas permeability of nanoporous graphene membranes.

We identify the inhibition effect of a non-permeating gas component on gases permeating through the nanoporous graphene membranes and reveal its mechanisms from molecular dynamics insights. The membrane separation process involves the gas mixtures of CH4/H2 and CH4/N2 with different partial pressures of the non-permeating gas component (CH4). The results show that the permeance of the H2 and N2...

متن کامل

H2 Elimination and C-C Bond Cleavage of Propene: A Theoretical Research

Propene dissociation channels were characterized by ab initio CCSD(T)/6-311++g(d,p) calculations. Inthis work the detailed mechanism of propene dissociation to C2H4+CH2, C2H2+H+CH3, C2H2+CH4 andC3H3+H2+H have been investigated. According to our calculations, ten fragments can be classified intofive dissociated channels. Our results point out that two mechanisms come into play in the H2 eliminat...

متن کامل

Statistical Modeling of Adsorption and Selectivity of the Binary Gases of CO2 /CH4 , CH4 /H2 and CO2 /H2 on MWCNT-OH

Equilibrium adsorption property of multi-walled carbon nanotubes with OH group was studied using experimental design for the adsorption of CO2 , CH4 and H2 . The effect of temperature, pressure, their binary interactions and quadratic terms were studied for adsorption capacity of nanotubes and the results were analyzed by the face centered central composite design method and analysis of varianc...

متن کامل

Application of Functionalized Graphene Oxide Nanosheet in Gas Separation

   Graphene oxide nanosheet (GONS) can be a suitable membrane for gas separation with high permeability and selectivity. Separation of N2/CO2 using functionalized GONS was investigated by molecular dynamics simulations. The simulated systems were comprised of two types of GONS with a pore in their center, N2 and CO2 molecules. The selectivity and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2015